




















where Z, is the value of 2 belonging to one of the points of inter-

section of a straight line parallel to the z-axis with the boundary of

R. Evidently, F(n) = g satisfies (2.12). Furthermore,
n-m-2 _2 _
Di Vpg=0

because of (2.1). Hence,

A-n=
vigs= 3 £,(p).
Now, let g’gp,z) be defined by
2Zd=-m=3
By = _>- z h‘k(P)’
An =f An

2n-m-3 2n-m- 3

An =1, - eZ (k +1)(k + 2h ,, (k=0,1,...,20-n-5).

The function g, So determined has the properties

2 _ o 2n-m-2 _
It follows from (2.13), (2.18) that
n
rl®) - g = 8,

satisfies both (2.8) and (2.12). This completes the proof of the theorem.

on-n-4 = fon

(2.15)

(2.16)

-m-h "(2.17)

-/

(2.18)

(2.19)

Successive applications of the foregoing theorem at once yield a

representation of any solution of

n

f =i
(1)

in terms of solutions F of the equations

(2.20)

B =
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In particular, if all cg (1i=1, 2, «c.y n) are distinct,

n
F= E p) (2.22)

n

F = E K pK) (2.23)

In connection with the plane problem of elasticity theory for an

whereas if all cﬁ coalesce,

orthotropic medium, special interest is attached to the case in which

(2.2) assume the form,

32 2_ 22 2 @
A: 5 v = +C . (20211)
36 i apz 13,7

Here P and 2z are Cartesian coordinates, and §72 is a modified two-
dimensional Laplacian operator. In the rotationally symmetric problem
appropriate to a medium with transverse isotropy, on the other hand, we

encounter the case in which

22 , 1 a 2 932 13 229°
- — - Sm— » 2.2

where P and z are circular cylindrical coordinates and §72 is a

modified axisymmetric Laplacian operator.

Finally, if V. ia {2.20) is definod as in (2.2L) or (2.25), and
ci =1(i=1, 2, «sey n), then (2.23) becomes identical with Almansi's
[12] representation of the general solution of V?an =0 in terms of
harmonic functions, for the case in which ‘72 is the two-dimensional or
the axisymmetric three--dimensional Laplaciarn operator. This special in-
stance arises in the well known applications of Almansi's theorem to the

plane and to the rotationally symmetric problem in the classical theory

of elasticity of isotropic media.
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3. Stress-Strain Relations and Strain-Energy Function for a Kedium

with Transverse Isotropy

Let us, temporarily, adopt the notation,

7i=7‘n’ 7;-7;,},, f3=’/zz’ rh=fﬂ’7g=fu’ f6=7lﬂ‘;

H(3.1)
31=en, 82=8yy, 93=ezz, ehzeyz, es=ezx, 66=ew.

J

Here, 7;x’ ... and e_, ... are the Cartesian components of stress

and "infinitesimal" strain, the strains being defined by

8n=ux,x, csee 8y2=uy,z"‘uz,y, svee (3.2)

where [ux, uy, uzJ are the Cartesian scalar camponents of the displace-
ment vector.

The general linear stress—strain law now assumes the farm,

7, = ¢y 0y (3.3)
in which 1i,J range over the integers one to six, and the usual summation
convention is employed. For a homogeneous medium the ¢ are constants.6

1)

A necessary and sufficient condition for the existence of a strain-

energy function W(el, $365 e6), such that

IV
fi = 'a"e—i: (301‘)
is that
cji = cij. (305)
Moreover,
1
W=3 C15 € 5 (3.6)
6Note that the present definition of the elastic constants Sy
coincides with thal adopted by Love [1], p. 99. 3
9
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We now impose the condition (transverse isotropy) that the stress-strain
law (3.3), (3.5) be invariant under an arbitrary rotation about the

z-axis. This is the case if and only if
c,, =0 (1 =1,2,3; § = L,56), (i =L4,5,C; ) #1)

i3
~(3.7)

€)1 = Cppr ©13 = 30 ), = Cggs 2046 = €37 = Cpp¢

With the notation,

Cyy = 85 €34 = 8, e, = Ao g =)ZZ
(3.8)

¢1p= 8= 2, 3= b,

the stress—strain law (3.3), (3.5), subject to (3.7), (3.8), becomes

-

fn=aen+(a-gz)eyy+bezz

7;y =ae . + (a - %ZZ)'exx + be,,

) + (3.9)
7oy = b(exx + °yy) + ae
Tya =A% Tax =M Try=Hoxy )
whereas (3.6) appears as
oW = a(el + ef,y) + 302 +2(a - 2o o
+2b(e, 4o Jo, +Ulel, +05) +iTel . (3.10)

The stress-strain relations (3.9) involve five independent elastic con-
stants, of which 4 and /ZT have an obvious physical meaninge

Inverting the first three of (3.9), we reach

1

-— ..
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1
Oxx -'if[%;x - ’)7;y - ;,7;z
1
®yy = E [7§y “ P T " ;r7;z]
1 7E
ezzzi[/zz-'r(fn"’ryy)])
where
o YRV’ -37) g ai-b’-3E
af - b° a -4
- 2 S —
- b -2 2b
_))=aa ~ 28 . ;'.;__.&3.
aa - b aa - b
Furthermore,
E= 32Z11.4-;)).

11

> (3.11)

b (3.12)

(3.13)

The physical significance of the four new elastic constants defined in

(3412) is immediate from (3.11).

A trivial computation, based on (3.10), ylelds the following neces-

sary and sufficient conditions for the positive definiteness of W:

a>o,z>o,/¢>o./7>o,aZ-bz-E/‘a'>o,

or, equivalently,

(3.1h)

2
E>0,E>0, 4 >0, >0, 1< Y<1,1-> 28, as)

In the special case of isotropy, we have

s=iogu X I voA - 24

M =R =T

(3.16)
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L. Basic Equations for a Medium with Transverse Isotropy in the Case of
q

Torsionless Axisymmetry

With reference to cylindrical coordinates (P’ 9, Y), where
X = p cos Y, y=p sin Y, Z = 2 (L.1)

the alsplacement field in the presence of torsionless axisymmetry about

the z-axis, is characterized by
u}o = 1)3(}),2), = 0, u, = u (0,z). (L.2)

The associated field of strain now becomes

u
R B

(L.3)
ef’z=‘.lf”z+uz’f” eyf’zez),:O,
and, according to (3.9), the stress-strain relations are
7}}) = aeﬁp + (a - 2;(')6), 7+ bezz
7., =ae,, + (a-~- 2;)3 ~0~bezz
L <4 L (Lob)
'fzz =ae, + b(e})o + ey),)

702 =/ajoz’ f)’ = f)’z= B J

The stress equations of equilibrium, in the absence of body forces, by

virtue of (k.2), (L.3), and (L.L4) here reduce to

7, -7/]:.'
-
%f+?z’z+' P ° > (L.5)
f [ ]
T + 3%—2- =0

22,2

Tup *
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and substitution of (L.2), (Le3), (LelL) into (L.5) ylields

+/£u’zz+(/a+b-a)uz’joz=o,
>(La6)
(/u-bb)ez-o-/‘—-(f) ,j_))—(/a-bb-ﬁ)uz,zz:O,
in which
e=e +e6,,+ 6 =ll(u)+u : (LeT)
f’f’ )’)’ Pa}o)oﬁ Z,2




Se Derivation and Completeness of Lekhnitsky's Stress-Function Approach

Suppose L,IF(f’Z) and uzgo,z) satisfy the equilibrium equations (L.6)

in a region R of the meridional half-plane P >0, ~®0< 2z < o, and let

R have the property that straight lines parallel to the coordinate axes

intersect the boundary of R in at most two points. We may then define

two functions U(P,z) and VSo,z) by means of

For convenience, we introduce the operators

P 32 L13 _13 3
VTV TR f’?’f(faf’)’
p =9,

2" 3

(5.1)

- (542)

J

V2 being the axisymmetric Laplacian. Substitution of (5.1) in (L.6),

with the aid of (L.7) and (5.2), yields

9
R
) -

a[(/u +0) Ve y 02V e an:v]= o,

[av U+,ur:2U+(/u.+b)D2V]-o

> (543)

o

or, since (5.1) determine U and V only within arbitrary additive

functions of 2z and p, r espectively,
aVZU + up20 + (U +b) DV =0
U+ YV +/4v3v+‘5.n:v=o

On eliminating first V and then U between (5.4), we reach

(Sel)

(5.5)




the operator SL being given by

haaggbbg

au
Consistent with the notation introduced in (2.2), we now definse the

Dlﬂ’l

n=vk s 20k (5.6)

operator Vf through
2 _ 2 2¢7 =
Vi=vi+cl)) (1=1,2) (547)
and seek to determins the coefficients c]2., cg in such a way that

a=vivi (5.8)

To this end, we expand the right-hand member of (5.8) as a polynomial in
V*, 02 and equate its coefficients to the corresponding coefficients

appearing in (5.6). This leads to

ci*c2=88-gb!(,-b s c2c2=_£_’ (5.9)
2 172 a
2
so that c]2., cg are the roots of the quadratic,
2 - -
Q(é)=g2+b +2¥(-88£ $+ -2 =0, (5.10)
s :

The inequalities (3.1lk) imply that Q( ; ) cannot have a negative or
vanishing root. Conditions (3.14), however, do not preclude the exist~
ence of complex roots. Indeed, ci and cg

alescent, or conjugate complex, according as

are real and distinct, co-

a3 - (21 +b)° Z 0. (5.12)

In the special instance of isotropy we conclude from (3.16), (5,10) that

c%-cg—l, whence Vi V2 (1=1,2) and L)L = Vh

15
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In view of (5.5), (5.8), and by virtue of the theorem proved in
Section 2, U admits the representation

@ (@ i
U=8B +z B
, (D) , (2 e
Vl B = 0, V2 B =0
)
where 7
/0 if ci #£ cg
\1 ir ci = cg. |
él) (2)
It is expedient to define two new functions Af,z), ASo,z) by means of
@ @ (2 (2) (2 i
B o=A, +k_, B =4,
(s.14)7
, (1) s (2) i
Vl A = 0, V2 A = 0.

From (5.1k), (5.12), (5.13), (5.7) follows

(1) (2)
U=1D, [A +zF A, ] (5.15)

(1) (2) (2)
ViU:-Di[ciA +c§zklz-2kc§A ] (5.16)

?

Substituting (5.15), (5.16) in the first of (S5.4), and performing two

successive z-integrations, we obtain

5 w e (2
w +4b) V= Dz [(acl -,a)A + (a02 -/a)z A,z
2,2 2
- 2ac2kn +z rl + 2z fa], (5.17)
where f; and £, are functions of P alone. We first treat the general
cage in which the degeneracy /J, = -~ b 1is ruled out,

7'I'he existence of A(l) and A‘z) is readily verified with the aid
of the last two of (5.12).

P
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Case 1: 4 +Dd £0
In order to determine the nature of the functions fl’ f2’ we substi-
tute (5.16), (5.17) into the second of (S.L). This lengthy computation,

with the aid of (5.10), (5.13), (S.1k4), leads to
Vit =0, Vif,=0 (5.18)

Now define ¢(f>,z) by

(1) (2)
1 k
¢='—M[“ 2 ‘,N%‘f”]’

(5019)
avZ ey == 2,
Fram (5.19), (5.15), (5.1.), (51, follows
u = - g/,( +b) @
F i (5.20)
uz = aV2¢ + 9{1 - a) ¢’zz:
and (5.13), (5.1k4), (5.18), (5.19) imply
no=vivip =o. (5.21)

We have shown that, barring the exceptional case A +b= 0, every
solution of the displacement equations of equilibrium (L.6) admits the
representation (5.20) in terms of the stress function ¢ which is sub-
Ject to (5.21). Moreover, a direct substitution confirms that every dis-
placement field of the form (5.20), with ¢ a particular solution of
(5.21), satisfies (L.6) even if AL+ b=0. Equations (5.20), (5.21),
except for an wu.essential constant muitiplier of d), are identical with
the stress-function approach given by Lekhnitsky [3], and independently

arrived at by Elliot [7). Applying the theorem of Section 2 to (5.21),

5 ...



and recalling (5.7), we note that the general solution of {5.21) may be
written as

@(Jc,z) = ¢1(}>, z/cl) + 25 ¢Z(P,z/02), (5.22)

where (Dl(f,z), ¢2()o,z) are arbitrary axisymmetric harmonic functions

and k is given by (5.13). The cylindrical comronents of stress belonging

to the displacements (5.20) are obtained with the aid of (L.3), (LeL) and
may be omitted here.
In particular, if the medium is isotropic, let
21.(2
X = ¢. (5.23)
1 -2

In view of (3.16), Equations (5.20), (5.21) here reduce to

2/(,(,uf = - x'ff’z, 2/luz= 2(1 - )))V2 X- X,zz’
(5.2L)
th = 0,

which is Love!s stress-function approa.ch8 to isotropic problems with

torsionless axisymmetry,

Cage 2: /u,+b=0.

In this special instance (5.4) degenerate into

- 2 a -
VEU +’§ U,zz =0, Vi +/ZT v,zz =0, (5.25)

and by (5.10),

c.i =,&a£, cg = i. (5.26)

8See [1]) p. 276.

18
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Consequently, according to (5.1), {Z.7), the general solution of (Le6) now

appears as

w=U, u =V
Lo 2 (5.27)
V]2-U = 0, V:V =0

and is thus again expressible in terms of two arbitrary harmonic functicns.
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